![]() Life with migraine is hard enough, without missing out on one of life’s great pleasures – chocolate. It’s entirely understandable how you would just try and avoid everything that you suspect might possibly trigger an episode, but the research tells a story that might suggest a change in eating habits won’t bring on an attack for the majority of sufferers. For the rest, decreasing the underlying sensitivity in the brainstem using a natural drug free treatment may mean what was once a trigger is now a pleasure! Migraine Triggers - Why Chocolate?![]() Whenever I ask someone during a consultation what their triggers are, or what they avoid to try and keep migraines at bay, there are several that come up in most cases. Stress is number one without question, and this supports the research with up to 80% of migraineurs reporting stress as a trigger (1)– it’s rare that this won’t be listed, along with hormonal changes, sleep disturbance and skipping meals. When it comes to dietary triggers alcohol is in a similar boat with an overwhelming majority reporting this, however not far behind is chocolate. The odd thing about chocolate is that a relatively small percentage of those who say they avoid it will say it is definitely a trigger. They just avoid it because it could potentially be. Anecdotal evidence of clients saying their migraine attack came on not long after eating chocolate led researchers to speculate on how chocolate could be a migraine trigger. The first suspect was tyramine, a natural byproduct of the breakdown of proteins in certain foods when they age, leading people to avoid leftovers and cheeses. Tyramine is another migraine trigger ‘suspect’ with little proof to support its villain status. Decades of research have not been able to establish whether tyramine does or does not trigger migraine attacks, but research from Pastore and colleagues (2) makes the presence of tyramine irrelevant to the 'chocolate migraine trigger' debate. Not only did they show that chocolate contains very little tryamine, but it in fact contains two substances more likely to have a protective impact in dopamine and serotonin. ![]() The next suspect was caffeine. Caffeine enjoys a complicated relationship with migraine, and with 100g of dark chocolate containing up to 81mg of caffeine, (similar to a double espresso), the impact could be significant. Read more on Migraine Headache and Caffeine here. ![]() On the one hand caffeine has been added to headache and migraine medication due to it’s ability to increase absorption from the gut, helping the action of acute pain relieving medications. Secondly it binds to adenosine receptors which prevents drowsiness in some parts or the brain, but inhibits pain transmission and sensitisation in the brainstem where migraine and recurrent headache occurs. This is why many migraineurs report a ‘strong black coffee’ as their ‘go to’ to abort an attack. Despite the mechanism and anecdotal evidence, research into caffeine suggest it is no more effective than placebo at stopping attacks. Consuming more than 300mg of caffeine per day has been shown to increase the risk of chronification (i.e. increase the frequency of attacks), and people taking around 200mg per day might decrease the effectiveness of their abortive migraine medication. So again the role of caffeine is not clear and it’s certainly not ‘an obvious trigger’ Migraine Triggers - Chocolate Research![]() According to Professor Peter Goadsby (3), for something be considered a migraine trigger it should trigger an episode 9 times out of 10 and within a couple of hours (e.g. glycerine trinitrate triggers >90% in under 10 minutes). As far back as 1974 researchers Moffett, Swash and Scott (4), began exploring the possible links between chocolate and headaches. In their double-blind placebo controlled trial in 80 subjects who all reported small amounts of cocoa products as a trigger, found only two subjects responded consistently having headaches after consuming chocolate. Their findings suggest that chocolate on its own rarely is a precipitant of migraine. Another double blinded trial (5) comparing chocolate to carob also found that chocolate does not appear to play a significant role in triggering headaches in typical migraine, Tension-Type Headache or combined headache sufferers. So why is the anecdotal case strong against chocolate? The current accepted theory was outlined by Prof Peter Goadsby at the 2017 Migraine World summit (3): ‘Part of the presentation with migraine is the premonitory phase, which occurs 6-10 hours (can be up to 2 days) before pain (or typical migraine) symptoms present. One of the features is cravings for certain foods – sweet foods, salty foods etc and this is driven by the hypothalamus. So people will eat certain foods not knowing that they are in the premonitory phase and then associate that food with the migraine, when in all likelihood they were going to have a migraine anyway.’ Is it possible that your migraine has started anyway when you suddenly get the urge to eat some chocolate? Migraine Treatment - Can Chocolate help?The main health benefit of eating dark chocolate (>70% cocoa dark chocolate) comes from the antioxidants (oligomeric procyanidins or flavanoids) found in raw cocoa beans, which can help promote blood flow to the brain, keep arteries elastic, and lower inflammation. Antioxidants neutralise free radicals and prevent oxidative stress (damage that free radicals inflict on tissues in the body), helps to increase good cholesterol levels and decrease blood pressure (6). We have seen that chocolate contains serotonin and dopamine both of which play significant roles in dampening excitability of pain nerves, and 30g of 84% dark chocolate shown to decrease inflammation in diabetic patients (7). It is also a rich source of magnesium with 100g block containing around 230mg of magnesium. Researchers (8) looking more specifically at cocoa found that ‘diets enriched in cocoa increase proteins that prevent your nerve cells from becoming excited and releasing inflammatory molecules (cytokines) that are though to be involved in migraine pathology’ Every person who suffers migraine is different, so it is important to filter all of this through what you understand from your own story. Migraine Diet - Chocolate![]() Chocolate - to eat or not to eat, that is the question. If you know that every time you have eaten chocolate you have had a migraine, I am not suggesting you tempt fate. If on the other hand you think that sometimes it has been a trigger, but other times not, or if you have only avoided chocolate assuming that it is a migraine trigger then you may wish to reconsider your view. What you should consider when deciding to try it is whether or not you have a number of other trigger factors building and whether or not you might already be in the premonitory phase. The key is to avoid trying it if you are craving it, or feeling lethargic, yawning excessively and moody. It also makes sense that if you have been short on sleep and are feeling like your stress levels are high, or the timing of hormonal changes (leading into the start of your cycle or mid cycle) then that may not be the best time to try it. An important note to avoid leading to increased frequency of migraines is that 100g contains up to 80mg of caffeine – as strong as a double shot espresso. Over 300g per day can lead to increased risk of chronic headaches, so be careful with how much chocolate, coffee, tea you have. You can read more about caffeine and migraines here. Migraine TreatmentRegardless of triggers - stress foods, sleep hormones, the all have to interact with an overstimulated trigeminal nucleus. This is what is at the heart of migraine, tension-type headache along with the other major headache types. If you don't have an overloaded trigeminal nucleus - you don't get symptoms. Avoiding triggers is one thing, but dealing with the overstimulation of the trigeminal nucleus is far more significant, and will have a much bugger impact. Picture the trigeminal nucleus in the brainstem as a coffee cup. In non-headache sufferers this cup starts the day almost empty. In migraineurs and recurrent headache sufferers the cup starts at ¾ full. There is less capacity to absorb more input into the system, and different people will be sensitive to different inputs - these are the triggers. Rather than walking on eggshells all the time trying to avoid spilling the coffee cup over, use a treatment that 'empties some coffee from the cup'. That is exactly what the treatment at the Melbourne Headache Centre does. The three nerves from the top of the neck feed directly into this part of the brainstem. We can test your neck to see if they are causing some of this irritation and treat it. Empty the coffee cup.........give yourself more capacity to 'absorb triggers' and who knows.......maybe you can have an easter egg or two!! References: (1) Pavlovic, J.M., Buse, D.C., Sollars, M., Haut, S., and Lipton, R. B. (2014) Trigger Factors and Premonitory Features of Migraine Attacks: Summary of Studies.Headache; Nov/Dec 1670-1679. (2) Pastore, P. Favaro, G. Badocco, D. Tapparo, A. Cavalli, and Saccani, G (2005) Determination of biologic amines in chocolate by ion chromatographic separation and pulsed integrated amperometric detection with implemented wave-form at Au disposable electrode.Journal Chromatography A, Dec 9; 1098 (1-2): 111-5. (3) Professor Peter Goadsby (2017) The Top 10 Myths to Bust. Migraine World Summit (4) Moffett, A. M., Swash, M. and Scott, D.F. (1974) Effect of Chocolate in Migraine: a double-blind study. J Neurol Neurosurg Psychology. Apr, 37 (4): 445-8. (5) Marcus, D.A., Scharff, L. Turk, D. and Gourley, L.M. (1997) A double-blind provocative study of chocolate as a trigger of headache. Cephalalgia, Dec; 17 (8): 855-62. (6) Saxelby, C (2010) Myths busted - How healthy dark chocolate. (7) Jafarirad, S., Ayoobi, N., Karandish, M, Jalali, MT, Haghighizadeh, M. H., and Jahanshahi, A. (2018) Dark Chocolate Effect on serum adiponectin, biochemical and inflammatory parameters in diabetic patients: A randomized clinical trial. Int J Prev Med, Oct; 12,(9); 86. (8) , Cady, R., Denson, J.E. and Durham, P.L. (2012) Inclusion of Cocoa as a dietary supplement represses cytokine expression in spinal trigeminal nucleus in response to chronic trigeminal nerve stimulation. Presented at 54th Annual Scientific Meeting, American Headache Society, June 21-24, 2012. Program Abstracts, Headache: May, 862-914.
0 Comments
![]() What type of headache do you have? The answer should be simple. The diagnostic criteria set out for each disorder are clear and distinct, however there are many sufferers who’s symptoms blur the boundary between headache types, and will shift from one definition to another as the headache progresses, and they just don’t fit the arbitrary boundaries that have been set by the International Classification of Headache Disorders. What does this mean for the treatment of these people, and what does it mean for the medical approach to headaches? In National Headache Awareness week 2018 I was fortunate enough to attend a talk given by Dr Michael Eller on ‘Migraine management and treatment options’. He began the talk with a little of the history of headache management through time and went on to talk about how migraines are classified – in other words how you can tell it’s a migraine compared to other forms of headache. I was a little shocked, but overwhelmingly in agreement with Dr Eller’s comment that the classification system is ‘a little bit silly really’. In other words lots of people don’t fit the neat description we have for each headache type, and at different times of the day their classification would change depending on how the episode is behaving. Anyone who has been to see more than 2 or 3 doctors for their condition will know exactly why a leading specialist in Melbourne would make such a comment. You will rarely end up with the same diagnosis from the same doctors, and despite the attestation of experts that ‘an accurate diagnosis is essential to good care’ the facts remain that this diagnosis is difficult to obtain. The classification system is based on the differences in how each headache type looks, but many experts over the years have argued there are more similarities between headache types than there are differences, and that instead of ‘headaches being separated diagnostically by subtle clinical nuances of dubious reliability’ we should view headaches as slightly different manifestations of the same underlying process (Cady et al 2002). So what does a migraine look like? Some people would say if they have aura then it’s a migraine, but aura only occurs in 20% of cases. Others would say if they feel nausea or the headache throbs then its migraine, but as we will see sometimes that’s not the case. We have the following definitions according to the International Classification of Headache Disorders (ICHD) 3: Migraine: A.At least 5 attacks fulfilling criteria B-D B.Headache attacks lasting 4-72 hours (untreated or unsuccessfully treated) C.Headache has at least two of the following four characteristics 1.Unilateral location 2.Pulsating quality 3.Moderate or severe pain intensity 4.Aggravation by or causing avoidance of routine physical activity (e.g. walking or climbing stairs) D.During the headache at least one of the following: 1.Nausea and/or vomiting 2.Photophobia and phonophobia E.Not better accounted for by another ICHD-3 diagnosis So to satisfy the criteria for a migraine we could have moderate pain on one side of the head with nausea. Easy right? So let’s compare to a frequent tension-type headache (TTH):
A patient reporting moderate throbbing/pulsing pain on one side of the head with sensitivity to light, but no nausea or sensitivity to sound will not meet the criteria for migraine. Those having a unilateral and pulsing headache will not meet the criteria for tension-type headache either. So what do they have? That depends on the doctor you see. Is it important to know? Probably not. What about a client with bilateral headache of moderate intensity and no nausea or sensitivity to light and sound? That’s a TTH according to the rules. If we add nausea then it’s a migraine – simple. Unless it’s occurring more than 15 days per month. Chronic TTH can have nausea as part of the diagnosis – so which do you have? If you think you’re confused, you’re not the only one. Dr Lawrence Newman at the recent Migraine World Summit gave a talk on the differences between tension-type headache and migraine. His first comment was tension-type headache ‘is not a headache that is disabling, or one that tends to drive people to see a doctor. There is no nausea, light or sound sensitivity. It’s just a mild to moderate headache that comes and goes’. Very little of what he said reflects the diagnostic criteria. There is nothing mentioned of the level of disability of the headache in ICHD-3, most likely because that is a very subjective quality. In contrast, the presence of one of sensitivity to light or sound is permitted in the tension type headache classification, yet not by Dr Lawrence. Migraines are defined as lasting 4-72 hours whereas a TTH may last 30 minutes to 7 days. If either of those two is ‘coming and going’ it is the migraine rather than a 7 day long TTH. Later in the same talk he mentions nausea and says ‘by definition you can have mild nausea associated with tension-type headache’. For episodic TTH that is in fact the exact opposite of the diagnostic criteria – which specifically state no nausea or vomiting and no more than one of light and sound sensitivity. Confusing, and to quote an expert ‘a bit silly’. A majority of the clients we see at Melbourne Headache centre would be diagnosed with Chronic migraine. That is, more than 15 headache days per month with at least 8 being migraine. Typically many of the other days include headache that fits the TTH criteria. Despite the fuss made over an accurate diagnosis, as Dr Lawrence points out, may of the same drugs are used to try and treat both cases, such as amitriptyline (Endep) or topiramate (topomax). In fact we regularly see people who have bilateral moderate headache with mild nausea but no sensitivity to light or sound (Chronic TTH) that have been treated with Botox - a drug only available under PBS to Chronic Migraine patients. Clearly in these cases the diagnosis is not reflecting the symptoms necessarily, but might be more reflective of what treatments your doctor wants to try with you. As Dr Newman puts it: 'it doesn't matter what you call it, it's the frequency of headache that's often going to guide the treatment'. We treat a condition that is common to all headache types, which is a sensitized brainstem, so the diagnosis isn’t particularly important. What is critical is what the source of sensitization is. ![]() Imagine each headache type is a different train, all sitting at the platform at a major centralized railway station (i.e. Southern Cross Station). Each train begins its journey in the same place, in the same way, and looks basically the same. Then as they move out of the station some trains will head north, some south, east and west, and others elevate or go underground. From that point the journey of each train looks quite different to each other. When your job is to try and disrupt the journey of each train at different points along its journey, (i.e. drugs targeting specific pathways of different headaches) you need to try and understand which headache type you are dealing with. When your treatment involves stopping the train from leaving the platform at the first station (i.e. decreasing brainstem sensitivity – Melbourne Headache Centre) then it really doesn’t make a huge difference which train you are referring to. We can potentially deal with all of them. Cady R, Schreiber C, Farmer K, and Sheftell (2002) Primary Headaches: A Convergence Hypothesis. Headache 42 ; 204-216. The American Headache Society: International https://www.ichd-3.org Is Caffeine a Friend or Foe?Why is that that the same thing can be a trigger and a treatment? Headache sufferers have had a love-hate relationship with caffeine, going from complete avoidance due to its triggering potential, to relying on a cup a day to keep pain at bay! Hidden amongst our morning tea and coffee, soft drinks and chocolate is a potent drug that has very complex interactions that go right to the heart of headache and migraine. What is Caffeine?![]() Caffeine is a chemical compound in the alkaloid family, (chemical name 1,3,7-Trimethylpurine-2,6-dione) that occurs naturally in over 60 plant species including tea, kola nuts, coffee beans, mate leaves, guarana plants, and cocoa nuts. As such caffeine is one of the most widely consumed psychoactive agents (able to change brain function/mental state) in the world. [1] How Does Caffeine affect our brain?When entering the body caffeine looks exactly the same to nerve cells as a substance called adenosine. Adenosine is active in a number of regions in the brain and is a key building block in our energy pathways, but doesn’t instantly boost energy. In fact adenosine binding to nerves in the brain causes drowsiness by slowing down nerve activity and promotes sleep. During this time our blood vessels dilate allowing more blood into the brain to nourish it during sleep. Caffeine blocks the ‘drowsiness effect’ by binding to adenosine receptors, leading to increased nerve activity and an increase in our ‘alertness’. In response to this increased activity the pituitary gland releases adrenaline – our fight or flight hormone. The result is what most people will feel when they drink coffee in increased activity of the central nervous system: increased heart and breathing rate, increased blood pressure, increased diuresis, cardiac muscle contraction and gastric, lacrimal (tear), nasal mucous secretions vasoconstriction of blood vessels in the brain. Blood will be moved from your periphery to your core and the liver will release more glycogen into the blood stream for extra energy. Headache and Migraine prevention - why Does Caffeine help?![]() Caffeine causes vasoconstriction in the brain, and was added to numerous migraine medications on the mistaken assumption that migraine was a vascular headache. ‘Now that migraine is thought to be a neurological and not a vascular disorder, caffeine’s common inclusion in migraine treatments suggests an alternative, non-vascular mechanism of action behind its efficacy in migraine patients.’(Nathan Fried 2017) While there may be some mild benefits with the vasoactive effects of caffeine, it is caffeine’s action in blocking adenosine receptors in the brainstem that is having the positive impact. In the brainstem (the home of the migraine circuit) adenosine is involved in pain transmission and sensitization. By blocking adenosine receptors here caffeine may help stop the spread of ‘excitability’ and abort a migraine or ease a headache. [2] Despite the anecdotal evidence or a ‘strong black coffee’ aborting migraines, research into caffeine as a monotherapy (not combined with another drug) shows it is no more effective than placebo in time taken to 50% reduction in symptoms. [3] The most commonly understood mechanism for helping headache and migraine sufferers comes from caffeine’s effect on your stomach. Ingesting Caffeine causes rapid lowering of gastric pH (more acidic), improving the absorption of analgesic medication. When the ergot family of drugs was in use a combination therapy known as cafergot was widely used. This has since been removed in most forms (still available as a suppository under prescription), due to deleterious cardiovascular effects of ergotamines. Today we see panadol extra on the market with caffeine combined with paracetamol. Despite some research to support its use as a combined therapy there isn’t currently a caffeine plus NSAID (like ibuprofen) on the market. This will be because both agents cause lowering of gastric pH, which indeed is the most common and concerning side effect of NSAID’s leading to stomach upset and ulcers. Once again we see the double-edged nature of caffeine. On the one hand, here there seems to be good reason to use it as either an adjuvant to other rescue medication, or for its own effects in dampening brainstem excitability, however there is evidence to the contrary. Not unlike the opioids (with similar dependence and withdrawal profiles) caffeine may seem to ne helping with one hand, but worsening things in the long run. Does Caffeine cause Headaches or Migraines?![]() A study of 36 children and adolescents (aged 6-18) who were heavy cola drinkers (minimum 1.5L per day or 192gms caffeine) and suffered daily headache examined the effect of ceasing caffeine consumption. Two weeks after stopping their caffeine intake researchers saw a complete cessation of daily headache in 33 of the 36 children in the study. [4] Another study examining the factors that lead to chronification of headaches found daily consumption of caffeine to be a significant factor in the development of analgesic overuse headache and chronic migraine. [5] This study was followed up 2 years later looking more closely at the amount of caffeine used, and found a history of heavy caffeine use (> 300mg daily) was associated with chronic daily headache compared to episodic headache control groups. [6] In 2016 Lee and associates looked at the effect of caffeine cessation on the effectiveness of acute migraine medication. The two groups (abstinence and coffee groups) had a mean caffeine intake of 192mg per day. Given it’s adjuvant effect with analgesics one might assume that cessation of caffeine use would decrease the effectiveness of acute migraine treatment. In fact they found the exact opposite. Discontinuing caffeine use actually significantly improved the efficacy of acute migraine medication. [7] Should Migraineurs have Caffeine?There appears to be a complex association of caffeine with headaches. On the one hand many properties seem to make it a useful medication for helping relieve pain, but daily use appears to have some negative effects in increasing the likelihood on transforming from episodic to chronic headaches. It’s the same story we have been hearing for opioid analgesics like codeine, recently taken off the shelves as an OTC (over the counter) medication. Adenosine homeostasis also plays a crucial role in narcotic drug responses and plays a role in neurobehavioural features associated with opiate addiction and withdrawal. [8] Caffeine also affects dopamine by increasing its production in the brain. Dopamine is our ‘pleasure drug’ so it makes you feel euphoric. This action is very similar to two banned drugs in heroin and cocaine which both slow down dopamine reabsorption. It’s the action on dopamine that may be even stronger cause of addiction and withdrawal with caffeine. In other words the effect of caffeine and its interaction with adenosine and dopamine receptors results in the same withdrawal/addiction responses in our central nervous system as narcotic drugs. How much caffeine is o.k. for migraineurs and headache sufferers?![]() The Food Standards Code (Australian government) restricts the caffeine content of energy drinks. Whilst they have not set an upper limit in Australia, they have commented on the limit that appears to be linked to anxiety as being 3mg of caffeine per kg of body weight. This equates to around 200mg per day for an adult, and that seems to be a similar figure in the headache studies above. [9] At the end of all this you firstly need to figure out whether caffeine has any interaction with your headaches at all, as triggers are a hugely individual aspect of headaches. If you believe caffeine is a sensitive trigger with either not enough or too much (i.e. you have a ‘sweet spot’ in terms of it being helpful), you may want to monitor how much you have on a longer-term basis. 200mg per day, whilst in the short term may seem like its helping, in the longer term may actually be making you worse. An espresso shot may contain anywhere from 30mg to 90mg per shot. This variation is in the bean and roast type with lighter roasts having more caffeine. Caffeine in other foods drinks as per Food Standards Code [9]: Black tea – 20-80mg/250ml (longer brewed = higher caffeine) Coca Cola – 48.75 mg per 375ml Milk Chocolate – 20mg /100g Dark Chocolate – 81mg/100g Energy drinks – 80mg/250ml So one double shot of light roasted barista espresso coffee could have you close to the 200mg level. In the USA the recommended daily intake for caffeine is 400mg. The discussion around triggers always comes back to dealing with the common underlying theme which is an overactive brainstem. Lots of people consume caffeine but don’t get headaches, even when they stop or withdraw. So what makes headache and migraine sufferers prone to the positive and negative impacts of caffeine. Indeed why do all these different triggers result in headache? The underlying problem is overactivity in the brainstem – in the area housing the nerves for the head/face and neck. Regardless of the impact of triggers, the neck is the most common source of overactivity in this part of the brainstem and is the easiest to assess and treat. Treat the underlying causes today and get your neck assessed. References [1] Neurology advisor Caffeine-migraine-headache-trigger-treatment
[2] Fried, N.T, Elliot, M. B. and Oshinsky (2017) The Role of Adenosine The Role of Adenosine Signaling in Headache: A Review. Brain Sciences, 7 (3), 30. [3]Diener HC, et al. The fixed combination of acetylsalicylic acid, paracetamol and caffeine is more effective than single substances and dual combination for the treatment of headache: a multicentre, randomized, double-blind, single-dose, placebo-controlled parallel group study. Cephalalgia. 2005; [4] Hering-Hanit R, Gadoth N (2003) Caffeine-induced Caffeine-induced headache in children and adolescents.Cephalalgia, 23, 332-335. [5] Bigal, M.E. Sheftell, F.D, Rapoport, A.M., Tepper, S.J. and Lipton, R.B. (2002) ChronicChronic daily headache: identification of factors associated with induction and transformation.Headache, 42 (7), 575-581. [6] Scher, A.I., Stewart, W.F, and Lipton, R. B. (2004) Caffeine as a risk factor for chronic daily headache: a population based studyNeurology, 14; 63 (11) 20022-7. [7] Lee, M.J., Choi, H.A., Choi, H, and Chung, C.S. (2016) Caffeine discontinuation improves acute migraine treatment: a prospective clinic-based study.Journal of Headache and Pain; 17 (1); 71 [8] Mohong, Wu et al (2013) Opiate-induced Changes in Brain Adenosine Levels and Narcotic Drug Responses. Neuroscience, 3, 228; 235-242. [9] Food Standards Code (2018) Caffeine [10] Heckman et al (2010) Caffeine (1, 3, 7-trimethylxanthine) in Foods: A comprehensive Review on Consumption, Functionality, Safety and Regulatory MattersJournal of Food Science, 75, (3). Weather Related Migraines![]() Up to 53% of migraineurs report weather changes as a consistent trigger making it one of the most commonly reported triggers for migraine behind stress, hormones and skipped meals. [1] A subject of interest as far back as 1974, researchers have spent decades trying to examine the question: Does weather actually trigger migraine attacks, and if so, what are the factors related to weather change that is causing attacks in people? Theories over the years have included temperature and barometric pressure changes, high and low humidity, high winds, stormy weather, and changes in light conditions (very bright or dull light as well as changes in daylight hours). The science however has provided contrasting and often confusing results making it difficult to understand what is happening. In 1979 [2] researchers in London asked 310 migraineurs about the day and time of their attacks (subject to recall bias) and found no correlation with changes in wind, barometric pressure, humidity and temperature. Jump ahead to 2011 and Karin Zebenholzer and colleagues [3] undertook a 90-day prospective diary study in Vienna. Whilst they found trends when analyzing change in temperature, wind speed, sunshine duration in isolation, analysis of multiple variables to account for attacks yielded no positive findings. Their conclusion was ‘the influence of weather factors on migraine and headache is small and questionable. Migraine Triggered by Thunder Storm or Lightening![]() In 2013 [4] researchers studied the effect of lightening strikes on 90 migraineurs who kept diaries for 3-6 months. When they analysed the data they also accounted for rainfall, and barometric pressure. When there was a lightening strike within 25 miles (40kms) there was a 25-30% increased risk of both new-onset headache or new-onset migraine. They are following up with further research to try and determine what it is that lightening strikes do that can cause a slight increase in migraine incidence. The odds of having a new headache or migraine start increased on days with lightening that had a more negative charge leading researchers to suggest that something to do with the electromagnetic interaction is causing some irritation of the nervous system and triggering an episode. Lead researcher Dr Vince Martin [5], explained that other environmental factors change in thunderstorms, in particular related to fungi and mold. Rain increases mold counts, and if lightening strikes the ground it aerosolizes the fungi. In other words we breathe in a lot of fungi and molds in the air during thunderstorms, contributing to our now famous ‘Thunderstorm Asthma’ events. When this is coupled with the fact that migraineurs tend to have a higher incidence of non-allergic rhinitis (nasal and sinus irritation) it provides another possible mechanism for triggering an attack, but it is still interacting with a sensitized system as Dr Martin explains: “I think that what we don’t realize is all these different things in our lives can influence that (migraine) threshold. So how much sleep you got the night before, how much stress you are under, whether you fasted for a prolonged period of time. All these things have a neurologic effect on migraine patients and can seek to lower that threshold and make people more vulnerable to migraine.” The threshold to which he refers of course is the ‘explosiveness’ or the trigeminal nucleus. Read on for ideas on how to fix this sensitivity. Migraine Triggered by Barometric Pressure Changes![]() Barometric pressure is what we see weather forecasters referring to with weather patters. Low pressure allows clouds to form and typically rain and storms. High pressure is typically associated with clear blue skies and warmer weather. The challenge is that pressure changes ahead of the weather that comes with it, so you won’t often ‘see’ the weather that might trigger you. This might result in many migraineurs claiming to be able to ‘predict the weather’ as they might be sensitive to falling barometric pressure. Dr Martin [5] explains that ‘some (migraineurs are) triggered by falling or rising barometric pressure. Interestingly if falling pressure does it then rising pressure is usually ‘protective’ and vice versa.’ Researchers in Japan [6] studies the effects of changing Barometric pressure in 34 migraineurs compared to a control group of tension-type headache sufferers. On face value there appears to be a link between small decreases in barometric pressure (6-10hPa) and increased incidence of migraine compared to tension-type headache controls. Unfortunately the diary-recording period only went for 18 days. The problem is that we don’t know if the migraine group had a higher incidence of attacks and whether either incidence was different to the previous 18-days prior to recording. Cioffi and colleagues [7] investigated the effects of changing weather in patients with temporomandibular disorders (TMD) and migraine. Their results indicate that decrease in atmospheric pressure increased the intensity of TMD pain, however increase in pressure and temperature increased the intensity of migraine symptoms. Again the study is very limited, in part by a ‘lost' or 'not captured' data rate of 25% and no indication of the baseline activity in both groups – in other words we don’t know whether the pain fluctuations can be attributed to the weather or if these are normal fluctuations. More disturbingly, the authors claim as a starting point in their introduction that: ‘The pain course of subjects suffering from migraine is influenced by weather conditions’ citing two publications to support the statement. On reviewing these two publications the conclusions the authors draw themselves are quite the opposite: ‘The influence of weather factors on migraine and headache is small and questionable” [3] and “In a sub-group of migraineurs, a significant weather sensitivity could not be observed”. [8] Migraine and Weather: ConclusionsSo this all seems a bit confusing, and we want a simple answer – do changes in weather cause migraines or not? The answer is a simple as does chocolate, or wine, or perfume cause a migraine. The answer is obviously yes………..and no. That is to say migraineurs as a group are heterogeneous. Some things that may trigger one migraineurs may not trigger another, so pooling together large groups to study effects of anything, be it a trigger (or a treatment for that matter) can dilute the effect that it might have on sub-groups. The difficulty is in discerning the sub-group in a way that allows better predictions of the effects of The results of Hoffmann’s 12-month study [8], though inconclusive, did show trends leading to the conclusion that “only a sub-group of migraineurs is sensitive to specific weather conditions, explaining why previous studies, which commonly rely on pooled analysis, show inconclusive results”. One might expect a better result in migraineurs who report weather changes as a trigger, however Zebenholzer and colleagues looked at perceived weather changes compared to weather data and found a poor correlation. [3] Not unsurprisingly, the ability of a migraine brain to accurately detect weather may be impaired (similar to its response to noise, light, smells in some cases), leading to inaccurate forecasting, and the feeling that ‘the weather is changing and here comes my migraine’ whereas in fact the sense that the weather is changing may be a part of the migraine itself. Another problem is that changes in weather do not influence migraineurs in isolation. What were the other factors occurring at the time of the study with regards to amount of sleep – over-sleeping, under-sleeping, dietary influences, hydration levels, stress levels etc As with many other triggers, often in isolation or at low doses they may be ok, but when a strong dose or in conjunction with others triggers may cause problems. At the end of the day the research has failed to show what we know and see in the clinic, and that is, without question, migraine can be triggered by changes in the weather – but as with many other things migraine, the exact mechanism’s have eluded researchers and remains an area of ongoing focus for some. What to Do about Weather related Migraine: Treatment![]() What does chocolate, perfume, bright light, red wine, stress, hormones changes and weather changes have in common? Nothing apart from the fact that they can all (amongst a host of other things) be considered triggers for some peoples migraine. Focusing on triggers can be helpful if you only have a small number. If on the other hand you have multiple triggers, then this line of migraine management often proves futile and frustrating as the next doctor pulls out yet another migraine diary for you (scream!). The thing that ties these and every other migraine trigger together is that they all interact with a sensitized trigeminal nucleus to cause the symptoms we associate with primary headache conditions. So aside from moving to somewhere with stable weather patterns that has just the right mix of heat, humidity, wind and small changes in pressure to prevent your weather related migraines, what else can you do. I would urge you to ignore the triggers and focus on the sensitized brainstem. The nerves from the top of the neck feed directly into this area making it the number one suspect in the frontline of fighting the underlying problems in migraine. In recent years the migraine community has shifted away from the vascular theories to focus on a sensitized brainstem model. This brings the neck back into focus, and even Dr Andrew Charles has moved from: ‘this (neck pain) is just a symptom of their migraine’ in 2012 [9] to a 'greater appreciation of the potential role of the cervical nerves' acknowledging the 'frequent occurrence of neck pain could indicate a role for the upper cervical nerves in the transmission of migraine pain' in 2018 [10]. Come and get the underlying problem assessed and treated with the only technique developed specifically to lower trigeminal nucleus sensitivity. For those wanting more tips on how to minimise weather related migraine:
References[1] Pavlovic J. M. et al (2014) Trigger Factors and Premonitory Features of Migraine Attacks: Summary of Studies.Headache, Nov/Dec, 1670-1679.
[2] Wilkinson M and Woodrow J. (1979)Migraine and Weather. Headache. 19: 375–378. [3] Zebenholzer K, Rudel E, Frantal S, Brannath W, Schmidt K, Wober-Bingol C et al. (2011) Migraine and weather: a prospective diary-based analysis.Cephalalgia. 31:391-400 [4] Martin, G.V. et al (2013) Lightening Lightening and its association with the frequency of headache in migraineurs: an observational cohort study.Cephalalgia, 33 (6), 375-383 [5] Martin, G.V. (2018) Surviving weather-related Migraine. Migraine World Summit. (2018) [6] Okuma, H et al (2015) Examination of fluctuations in atmospheric pressure related to migraine. SpringerPlus Open Journal. [7] Cioffi, I et al (2017) Effect of weather on temporal pain patterns in patients with temporomandibular disorders and migraine.Journal of Oral Rehabilitation. 44; 333-339. [8] Hoffmann, J et al (2015) The influence of weather on migraine – are migraine attacks predictable?Annals of Clinical and Translational Neurology, 2 (1); 22-28 [9] Charles, A (2012) Migraine ResearchMigraine Research.ABC Health Report. [10] Charles, A (2018) The pathophysiology of migraine; implications for clinical management. Lancet Neurology. 17; 174-182. The kids are back at school (…..finally…… ) and families everywhere are getting back into their ‘routines’. As a young child we crave routine because so much of what is happening around is new, and ‘unknown’ and we find safety and comfort in things that are familiar. As we go through life we become exposed to the same situations over and over. Our brains quickly get used to our daily habits and are constantly seeking for patterns to the extent that our brain will begin to anticipate certain events – for example, starting every morning with a coffee, or taking a pain relieving medication at the same time every day. Your brain will anticipate the arrival of the caffeine or medication and start to make changes so that the arrival of the substance (i.e. caffeine) doesn’t come as a ‘shock’ and the system is already preparing for it. Some might refer to the feeling this gernates as a craving, and indeed the response if we don’t provide the subtsance that is expected can cause some ill feeling – a withdrawal response. The result of a disordered and ‘unepxected’ day is a stress response or ‘reacting’ and using our ‘fight, flight or flop’ response.
Migraine is a routine illness, in that, there are routines we have that create or upset the status quo. The migraine brain craves routine. Here are two key daily routines that can impact on migraines: ![]() Sleep/wake: Driven by our circadian rhythm our brain goes through daily sleep/wakes cycles. Someone setting their alarm for the same time everyday will often find that after a while their brain starts to rouse and wake in the minutes before the alarm goes off. The internal clock is anticipating the alarm, and rather than be ’startled’ out of sleep it begins a gentler process of progressing from deep sleep to a state of wakefulness. Right through the migraine cycle the interaction with the sleep/wake centres is obvious to see. Not only do we see yawning, fatigue and unusual dreams/sleep behavior as a prodrome, but in the midst of an episode many sufferers will find comfort in getting to sleep, often waking improved and reporting that the reason for taking some medication is the drowsiness and sleep they induce. We also frequently hear that changes in sleep patterns (too much or not enough) can be a trigger, with ‘brain fog’, lethargy and inability to process information being some of the most universally shared symptoms after pain, nausea/vomiting and sensitivity to light or sound. A small investment in good sleep health may have a positive impact on the frequency, duration and/or severity of your migraines. For the next month try going to sleep at the same time every night, waking the same time each morning (I’m sorry, yes, even on weekends) and provide your brain with some predictability. It’s just one piece of the puzzle, but in some it may be an essential piece. ![]() Neck Posture The second area we can adopt a healthy routine is good neck health. The science is patently clear now, that the area housing the trigeminal and upper cervical nerves is the ‘powder keg’ in all primary headache types including migraine. Sitting there on a daily basis, bubbling away waiting for a ‘spark’ (aka trigger) to blow it up. It is not hard to believe that the neck is a driving source of this problem. Not only does the research show that treating the neck decreases trigeminal nucleus activity, but the stresses we put on our neck are almost universal. Take a look around you at work, school, or the next time you are on a bus and count how many people are looking down or sitting slouched with their head forward of their body. Now bend your index finger right back on itself and hold it their for 20 seconds. The postures you are seeing are doing exactly the same thing to the top of your neck as what you have just done to your index finger, but because it builds up slowly and is relatively constant most of us we don’t notice it as much. Imagine now how often we sit with our head forward or look down. In fact even when we go to sleep on our side we tend to curl forwards, and on our back tend to use a pillow pushing the head forward. Our poor neck doesn’t get much respite other than when we are standing and looking straight ahead. Not a big percentage of anyone’s day. The fact is we look down a lot because that’s where our ands are and that’s where we interact mostly commonly with our world. Take another look around in your home or office and you will see that all the things we use most often we place between hip and shoulder height – hand height. So we have to look down. What then can we do? There are times when we look down and don’t need to. From the position of your car seat, to the location of the television in relation to your couch, working on a laptop instead of a desktop – there a numerous areas we can easily change with little or no expense in many cases. A phone can be held at eye level by folding one arm across your stomach to support the elbow of the hand holding the phone. Heavier tablets can’t be held for as long. If your routine is to read/watch tv from a tablet for long periods of time consider buying a tablet holder on a stand (often sold for musicians as a music stand). This can be adjusted to any height, easily packed away, and saves your neck an hour or so of being squeezed forwards. Lastly, have an expert examine your neck. The long-term changes that occur in the neck due to looking down or the head sitting forward cause reactive spams in the top of the neck. Whilst stretching and massaging these can provide short term relief, correction of the fault that is triggering the spasm is paramount to a more sustained result. Part of the genius of the Watson Headache Approach ® was not only to prove how much this problem irritates the brainstem, but to find a method of treating it that is long lasting and sustainable. A combination of treating the problem combined with often small changes in posture can have a profound impact on the neck, and as a result a significant decrease in the irritation of the brainstem, directly impacting on the area known to be the problem in migraines. Start your journey to better sleep and neck health today and make your migraine a ‘routine’ condition. Reason 5 - Our guarantee.
We have heard this story so often it makes me feel a little ill. I have been seeing my (insert one of chiro, physio, osteo, masseur, etc) once a week for 6 months - and it seems to help for a day or so. This is not helping. It is treating the symptoms, and because it is not getting at the underlying cause it is ultimately ineffective, expensive, and treatment without an endpoint. Our guarantee has 2 parts. The aim is to minimise the risk of treating people who either don't have a neck problem relating to their head pain, or not continuing to treat people who are getting no more than short term relief. Firstly we don't book everyone that calls for an appointment. We conduct a phone interview lasting approximately 10-15 minutes seeking information that may save you the time and money of an initial consult. Some people from the phone interview will be referred back to their GP or specialist for further investigation or referred back to their local health professional (Physio/Chiro/Osteo) for follow up. Those that are accepted will then book an initial assessment. Here we look for clear signs that your neck is related to your condition. By very selectively and precisely stressing the joints in the top of the neck we look to temporarily reproduce the area of your usual symptoms (i.e. push pain up into your head behind the eye). If we can reproduce these symptoms we sustain the pressure and look for the referred pain to ease after 30-40 seconds. If this "reproduction and resolution" of familiar symptoms occurs (and it does in approx. 80% of initial assessments) we accept the person into the initial treatment block. If we cannot reproduce familiar symptoms, or we can but they do not subside then it is unlikely the treatment we use will be effective, so rather than try and convince you to get a treatment that will ultimately provide short term or no relief and little else, we set ourselves apart from the crowd and decide not to treat you. Secondly, if you are accepted into the initial treatment block, then we expect there to be significant changes in your condition within 2-3 weeks. That is not to say that you will be "cured" in 2 weeks. If we get to the end of the second treatment week after the initial assessment, and there is no sign of significant change we stop.This is a protection for the 10% of cases who start treatment, and their condition does not respond preventing the cycle described above of "endless" treatment programs with no goals. This number is relatively low, indicating over 90% of people respond. The reason for such a high success rate is due in part to screening out 20% from the initial assessment, but unfortunately there are some whose necks will not respond to treatment in the long term - we will not continue to treat if you are not improving. We would love to be able to help everyone, and we would love everyone to respond well to treatment. The reality is that only 80% have treatable problems related to their neck, and approximately 90% of these will respond to treatment. The difference is we are upfront about these numbers, and open about every step of the process to minimise the risk of receiving treatment that is ultimately not effective. The improvement in the first few weeks is why this clinic can effectively run outreach services to regional areas. Those that do respond, respond quickly and are able to manage with self treatment soon thereafter. In part 1 we explained the underlying cause of menstrual migraine, as it is with other chronic headache and migraine types, is an overactive part of the brainstem called the trigemino-cervical nucleus or TCN. At the heart of this over activity is the interconnection in the TCN between the nerves from the upper part of the neck, and the nerves thatsupply the head and face. Hormones simply make it easier for this overactive brainstem to cause migraines. Let me explain further.
Oestrogen plays a critical role in the production of serotonin and also helps the brainstem to absorb serotonin. When oestrogen levels drop around day 1 of the menstrual cycle the levels of serotonin drop as well. Changes in the level of serotonin have a significant impact on headache and migraine. In fact the medications from the triptan family (e.g. Imigran, Naramig, Maxalt, Relpax, Sandomigran) are effective because they make the brainstem absorb more serotonin. So what does serotonin do? Increasing the levels of serotonin decreases activity in the brainstem, and stops activity “spreading” to the extent where it “switches on” the nerves of the head and face causing pain – a headache or migraine. It’s not just having more serotonin though. Too much as well as not enough will cause problems because serotonin also impacts on the blood vessels on the lining of the brain. A decrease in Serotonin will cause these blood vessels to dilate, contributing further “information” to an already overactive brainstem. Added to the loss of control of this over activity and it is not hard to see why the nerves in the head are “lit up” causing a migraine. Around mid cycle when oestrogen levels rise, serotonin levels rise causing blood vessels to constrict. This mechanical input from constricting vessels is enough in some people to trigger another headache, similar to the day 1 migraine, but commonly far less intense and often not migrainous in nature. The fluctuation in oestrogen and hence, serotonin is no different in menstrual migraine sufferers and non-sufferers. This has prompted leading expert in menstrual migraine Elizabeth Loder to say: “We must look at other factors (other than hormones)…………. Abnormal central nervous system response to normal fluctuations in hormones is the likely underlying cause of menstrual migraine”. (2001) Menstrual migraine is treatable, not by trying to treat hormones, but trying to treat the underlying activity in the brainstem. The upper cervical spine has the most significant input into the brainstem and in 80% of cases the usual pain of migraine and headache is able to be “switched on” by selective and specific pressure applied to the upper part of the neck. If this reproduced pain eases as we sustain the pressure, then treatment will be successful in 90% of cases. The brainstem of chronic headache and migraine sufferers is overactive.
Insights 1 and 2 examined the anatomy of headaches – the trigeminal nerve intermingling with the upper cervical nerves in the brainstem. The scientific evidence for the abnormal physiology (overactivity) involved in all major headache types is clear. With an unknown aetiology (cause), headaches were historically described according to symptoms. This view persists today with the International Headache Society’s (IHS) current classification system (1). This led to treatments targeting symptoms, and caused researchers and clinicians to speculate about the underlying cause. Migraine’s typical throbbing pain was assumed to be due to blood vessels constricting and then dilating. This theory gained much support and is still cited by many today, however research in the past two decades has disproven it prompting the president of the IHS to write “The vascular theory of migraine – a great story wrecked by the facts” (2). The “tightening” quality of tension headache was thought to be increased scalp muscle tension. In 1977 an EMG study (measures muscle activity) showed that the tension of scalp muscles was no different to non-headache sufferers, yet the muscles in the top of the cervical spine significantly increase activity (3). The two widely accepted theories regarding the underlying aetiology of headache and migraine were effectively dead. So what then is the underlying problem and how do we know? Three key areas of research combine to tell the story of an overactive brainstem. Positron emission tomography (PET) scans show activity in a part of the body. The trigemino-cervical nucleus (TCN) has been shown to have increased activity using PET scans (3-4). This overactivity is present during and after the attack indicating it is not as a result of the attack, but constantly present and fundamentally contributing to the attack. The triptans (e.g. Imigran, sumatriptan, Zomig, Maxalt) have a strong effect on a form of Serotonin highly specific to the TCN, which as previously described, has a dampening effect on activity in the brainstem and blocks pain signals from going up to the brain (6). Interestingly though, the triptans have demonstrated an effect in migraine, menstrual migraine, tension type headache, cluster headache and cervicogenic headache (7-10). This indicates all of these headache types have a common underlying problem - overactivity of the TCN. Reflexes provide information about activity in the central nervous system (CNS). If a reflex is weak or absent, it is indicative of decreased CNS activity. If a reflex is heightened it is indicative of an overactive CNS. There are two reflexes (nociceptive blink reflex and trigeminocervical reflex) that relate directly to the TCN in the brainstem. Both of these reflexes are overactive in migraine, menstrual migraine, tension type headache, and cluster headache (11-14). Remember from insights 1 and 2 all the areas the TCN relays information to the brain from. An overactive TCN could cause you to feel throbbing or tightening pains, get blocked ears, or pain in the teeth or sinuses, when in fact it is just the brainstem fooling the brain. The blood vessels, muscles and ears are fine as demonstrated in earlier studies. The evidence is clear. Increased TCN activity is a central part of the headache and migraine story. The current dispute in the neurological community is about “what causes this overactivity?” In the final part of the insights series (part 4) we examine the key area that can cause the brainstem to be overactive, and it is an area that has been largely ignored in headache and migraine - the upper cervical spine. (1) IHS Classification ICHD-II. International Headache Society. http://ihs-classification.org/en/ Accessed 3/2/13. (2) Goadsby, P (2009) The vascular theory of migraine – a great story wrecked by the facts. Scientific Commentary. Brain: A Journal of Neurology, 132; pp. 6-7. (3) Bakal, D.A. and Kaganov J.A. (1977) Muscle contraction and migraine headache: psychophysiologic comparison. Headache 17; pp. 208-15. (4) Weiller, C. et al (1995) Brain stem activation in spontaneous human migraine attacks. Nature Medicine, July; 1 (7); pp 658-660. (5) Afridi et al (2005) A positron emission tomographic study in spontaneous migraine. Archives of Neurology, 62 (8); pp 1270-1275. (6) Goadsbay, P.J. and Hoskin, K.L. (1998) Serotonin inhibits trigeminal nucleus activity evoked by craniovascular stimulation through a 5HT1B/1D receptor: a central action in migraine? Annals of Neurology, 43 (6), pp 711-718. (7) Ekbom, K. and Hardebo, J.E. (2002) Cluster headache: aetiology, diagnosis and management. Drugs, 62 (1), 61-9. (8) Siow, H.C. et al (2004) Frovatriptan for the treatment of cluster headaches. Cephalalgia, Dec, 24 (12), pp. 1045-8 (9) Cady, R.K. et al (1997) Responsiveness of non-IHS migraine and tension-type headache to sumaptriptan. Cephalalgia, Aug, 17 (5), pp 588-90. (10) Pavese N, Bibbiani F, Nuti A, Bonuccelli U. (1994) Sumatriptan in cervicogenic headache. Proceedings European Headache Federation 2nd International Conference; Abstract 131 (11) Nardone et al (2008) Trigemino-Cervical Reflex Abnormalities in Patients With Migraine and Cluster Headache. Headache, 48; pp 578-585. (12) Nardone, R. and Tezzon, F. (2003) The trigemino-cervical reflex in tension-type headache. European Journal of Neurology, 10 (3), pp 307-312. The anatomical pathway described in parts 1, 2 and 3 of this series have been known and recorded for several decades. To attribute credit to a single source for the information provided would do a disservice to some that have contributed to my knowledge over the years. Suffice to say that Professor Nikolai Bogduk from the University of Newcastle has produced a body of work over 30 years, which has greatly expanded our knowledge in this area and those that have taught me have undoubtedly drawn upon his publications. (13) Gantenbein, A.R. and Sandor, P.S. (2006) Physiological parameters as biomarkers of migraine. Headache, 48 (7); pp 1069-74. (14) Varlibas, A. and Erdemoglu, A.K. (2009) Altered trigeminal system excitability in menstrual migraine patients. Journal of Headache and Pain, 10; pp 277-282. In part 1 we looked at the trigeminal nerve (cranial nerve V) as being the key nerve relating to headaches and migraine. This week we will look at where this information goes and how it is controlled.
Walking along a path you misjudge ducking under a tree and a low hanging branch scratches you on the forehead. Branches of the trigeminal nerve sensing pressure and movement under the skin are the quickest to react – sending information into your brainstem. Here the peripheral nerve ends, and passes its information onto a number of central nerves by releasing chemicals (neurotransmitter) across a small gap between nerves called a synapse. This meeting of the peripheral nerve with central nerves happens in a nucleus. The trigeminal nerve shares its nucleus with the upper three nerves from the cervical spine and as such the area is referred to as the trigemino-cervical nucleus (TCN). On top of that three other cranial nerves send pain input from all muscles of the face and scalp (via the facial nerve), the sensory fibres from the middle ear (via the Glossopharyngeal nerve) and sensation from the outer ear and the dural lining of the brain (via vagus nerve). This means that this little area in the brainstem is responsible for relaying all of the sensory information from the face, head and neck into the brain. Back to our scratched head; some of the central nerves activated will cause an immediate response via a reflex loop - it happens without your control or without having to think. This may cause your eye to close (nociceptive blink reflex) and your head to turn away (trigemino-cervical reflex) to help protect you from further damage. A spilt second later the information travels along another central nerve that relays that information to the brain. You now become “aware” that something has struck you. Another fraction of a second later the feeling of pain is registered (it travels along slower nerves) You then make an appropriate response that is mediated through the peripheral nerves i.e. look for the object that struck you, reach up to check your wound. Nerve impulses arriving in the trigemino-cervical nucleus have multiple interconnections that can activate many different parts of the brain including memory and emotion. Lets illustrate the interconnections in the brain with another example. While sitting outside a plant’s branch is only just touching your ear. Your first reaction may be to swipe it away. Those with particular phobias may leap from their chair, maybe even screaming out, brushing anxiously at their ear thinking a spider is crawling on them. No pain, and no “real” threat, but sensory information from the head and neck is treated differently (due to the importance of the brain and brainstem), and is often interpreted through memories and emotions, so our reaction to very minor sensations or “inputs” can be quite extreme. We need to be able to control the “volume” of noise that the nerves are making. Most information coming into the TCN does not normally need to be “sensed” as a threat, and in fact is often not sensed at all. Information about movement from the muscles and joints in the neck, air movement from breathing, or touch sensation from the tongue moving in the mouth is not something that we need to be aware of. The brain has the ability to control the volume on information it receives, much like when you put on a woolen jumper – prickly for 30 seconds or so then you don’t notice it. It is no less prickly but your brain has turned down the volume. “Volume” control in the brainstem is achieved using a neurotransmitter, or a chemical, much the same as we described above with the nerves forming a chemical junction or synapse. These neurotransmitters either excite (turn up) or depress (turn down) the activity of the nerves. We have different neurotransmitters controlling different areas so we don’t depress all nerves in all areas. The activity in the trigeminal nucleus is regulated by a neurotransmitter called serotonin. In fact serotonin has a significant role throughout the brain in areas related to mood, sleep, appetite, and has been associated with illnesses such as depression. Put simply, Serotonin’s role in the brainstem is to set the threshold for pain. Any stimulus that goes above the set threshold will trigger a pain response in the trigeminal system – a headache. There is very good evidence from multiple sources – reflex studies, PET scan studies (looking at activity of nerves) and from pharmacological studies (the Triptan group of drugs) that the Trigemino-cervical nucleus is “Headache” or “Migraine” central and is overactive. In the next installment of “insights” I will outline what the abnormal trigeminal system looks like and why it has caused a major rethink in terms of the possible pain generators in headache and migraine. For those that have read this far……you are truly dedicated and most likely you are a sufferer looking for an answer. I have a special offer for 5 people only (first in first served). The first to: - share this post - Go to the following page and redeem your offer as a thank you for your support: http://www.melbourneheadachecentre.com.au/facebook-special-offer.html Insights The Anatomy of Headaches - Part 1 Apologies for the many of you who have already read this - just skip past it. I've had some issues with Facebook, who turned my original post into a photo, which are now rectified. Please - like and share as you never know who you may be helping. Part 2 coming this weekend. Headache and particularly migraine has developed an almost mystical quality within societies understanding. We have seemingly advanced so far in our knowledge of the human body, yet in this area, little in the public realm other than the development of new medications has changed in decades. In many circles the underlying pathology of headache is still treated as "unknown". Yet so much is known but unfortunately has not entered the public domain. I hope to change that for you in some way. For us to sense pain anywhere, or indeed "sense" anything, nerves must be activated. The key nerve that informs our brain about what is happening in a vast majority of the head and face is the Trigeminal nerve - cranial nerve V. This nerve, as indicated by its name, has three main branches; the opthalmic, maxillary, and mandibular nerves. From all the subdivisions of these three branches the nerve carries information back to the brain from the skin of the face and front half of the scalp (back of scalp and neck is upper cervical nerves), conjunctiva, mucous membranes of the mouth, nose and sinuses, the cornea, teeth, gums, palate, pharynx, tongue (except taste - i.e. position for speaking, pain/temperature, pressure), sensory information from the muscles in the face, temporomandibular joint (jaw), and out part of the tympanic membrane (ear drum). Importantly it also has sensory receptors in the dura mater including blood vessels. The Trigeminal nerve has a small supply to muscles that are involved in mastication (biting, chewing) and swallowing and the ear drum. See this diagram - courtesy of Gray's Anatomy. Essentially, if you have a headache whichever type it is classified as, it is the Trigeminal system that is active, or over active as the case may be.
All the information from the Trigeminal nerve make their way into the skull and 'terminate' in the brainstem in an area called the Trigemino-cervical nucleus caudalis. Here the peripheral nerves of the Trigeminal system that we have just described above form a junction or synapse with the central nerves that then relay this information up to our brain. It is in the brianstem, and particularly the Trigemino-cervical nucleus where the headache story really begins to unfold. In part 2 of "Anatomy of a Headache" we will look at the Trigemino-cervical nucleus in more detail and see why there is so much interest in the upper cervical spine as a potential pain generator in headache and migraine. |
AuthorRoger O'Toole is the Director and Senior Clinician of the Melbourne Headache Clinic and has over 10 years experience as a physiotherapist. Archives
January 2020
Categories
All
|
Location |
|